In this video, we will use linear modeling

to predict how a boat rocks from side

to side in the water around its flat equilibrium position.
In the previous video, we saw that we

could describe this rocking motion using the rotation
angle of the boat, theta, which is a function of time, t.
Recall that we defined theta to be

the angle between this flat waterline and this line

that rotates with the boat.

We use the convention that theta is positive
when the boat is rotated clockwise

and that theta is negative when the boat is
rotated counterclockwise.

We also saw that when the boat is sitting
flat in the water at theta equals 0,

it is in an equilibrium position.

So how do we determine the function theta of t?
Well, we know that the motion of the boat
is governed by Newton's second law.

Recall that for linear motion, Newton's second law

says that the mass, m, times acceleration, x double dot,
of an object is equal to the force, F,

applied to that object.

However, we are interested in the rotational motion

of the boat, and so we need to use the rotational form
of Newton's second law.

This states that the moment of inertia, I, times the angular
acceleration, theta double dot, of an object

is equal to the torque, tau, applied to that object.

Note that the moment of inertia is the rotational analog
of mass, and so the larger the moment of inertia of an object
is, the harder it will be to rotate.

Similarly, the torque is the rotational analog of force,
and so if you apply a larger torque to an object,

you will cause a greater angular acceleration.

We now have a second-order differential equation

whose solution is theta of t.

For a given boat, the moment of inertia will be a constant.
However, the torque will be a function of theta.

Therefore, before we can solve this differential equation,
we need to figure out how the torque depends on theta.

To do this, let's recall our observations

of the rocking boat in the previous video.

We saw that when the boat was sitting at theta equals 0,

in its equilibrium position, it just

sat there and did not rotate.

So the angular acceleration of the boat is 0.

And Newton's second law then tells us

that the torque when theta equals 0 is equal to 0.



So if I draw a graph of the torque versus theta,
this tells us that the torque must
pass through the origin of this graph.

We also observed that our boat had a stable equilibrium.

This was because when the boat was rocking in the water,
we observed that the water around the boat

acted like a spring.

For positive rotation angles, the boat

experienced a negative torque, acting

to rotate the boat back towards its equilibrium position.
So on this graph, it means that the torque

passes through the bottom right quadrant.

Similarly, we observe that for negative rotation angles,
the boat experienced a positive torque, again,

acting to rotate the boat back towards its equilibrium
position.

So we also know on this plot that the torque passes
through the top left quadrant.

In general, the torque will be a nonlinear function of theta.
And it might look like this, for example.

However, we are mostly interested in the boat's

behavior around its equilibrium of theta equals 0.
Therefore all we really care about

is how the torque behaves for small rotation angles

around this equilibrium.

Therefore we can approximate this nonlinear function using
a tangent line at theta equals 0.

This gives a linear approximation

for the torque of negative k times theta.

k is a positive constant such that negative k is
the slope of this tangent line.

Remember that this linear approximation

is only valid for small rotation angles.

We can now plug this linear approximation back

into our second-order differential equation

we obtained using Newton's second law.

This gives I theta double dot plus k theta equals 0.

You will recognize that this is the equation

of a simple harmonic oscillator.

And so we know that it yields oscillatory solutions
around theta equals 0.

We also know that the period, p, of these oscillations
is equal to 2 pi divided by the square root of k over I.
I should point out that if, in the future,

we wanted to perform a more detailed analysis

of the system, we should include a damping term

in this equation.



This is because we observed in the previous video

that when the boat was rocking, the amplitude of the boat's
oscillations decayed over time.

However, for this video, we will neglect the effects of damping
and just concentrate on this simple equation,

as it still describes the motion of the boat very well.

Up until this point, we have been considering a boat

that has a stable equilibrium.

However, this will not always be the case,

because we will later see that the shape of the boat

dictates whether the boat has a stable or unstable equilibrium.
In the case of an unstable equilibrium,

the torque near that equilibrium will have a positive slope
instead of a negative slope.

This positive slope will mean that this negative sign becomes
a positive sign, and so this positive sign becomes

a negative sign, giving the equation I

theta double dot minus k theta equals 0.

This differential equation yields very different
solutions.

For example, consider the initial conditions

theta at time t equals @ equals @ and theta dot at time t
equals @ equals some constant c.

These initial conditions correspond

to the boat starting flat in the water

but with some initial angular velocity—— for example,
if you gave the boat a slight kick.

I now invite you to pause the video

and try and solve this differential equation

with these initial conditions.

Welcome back.

If you solve this differential equation
with these initial conditions, you

will find that theta t grows exponentially.

This means that if your boat has an unstable equilibrium,
as soon as you put it in the water,

it will start tipping over to one side.

Therefore, if you were designing the shape of a new boat,
it is incredibly important to ensure

that your boat has a stable equilibrium,

because if it has an unstable equilibrium, when it enters
the water, it will tip to one side

and would be at risk of capsizing.

0f course, once the boat tips far enough away

from equilibrium, we would need to use a different model
to predict the boat's behavior, since our model

is only valid for small rotation angles.

All that remains is to figure out how the constant k depends
on the shape of the boat.

This will allow us to analyze a boat of any shape



to predict whether it will have a stable or unstable
equilibrium and, if it has a stable equilibrium,

to predict the period of the boat's oscillations
around this equilibrium.
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